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ABSTRACT 

I An in tegra l  transform is  established t o  f a c i l i t a t e  the solut ion 

of boundary value problem of t h e  first Mnd 5x1 an equ i l a t e ra l  

t r iangular  (equitriangular) region. 

order 2n) of the problem contains only powers of the Laplacian V . 
The boundary values a re  zero i n  terms of ( V ) , &ere i = 0, 1, 

2, (n-1). The inhomogeneous tenns and the i n i t i a l  conditions, if 

The d i f f e ren t i a l  operatar (of 
2 

2 1  

any, belong t o  a cer ta in  class of functions of which the  constant 

is t he  most in te res t ing  member. 

After some general discussions, t h i s  transform is  applied t o  

a number of problms i n  viscous flow and heat t r ans fe r  a l l  inside 

an equitriangular duct. Bumerical work has been carried out for 

these problems t o  show the  roles played by various parameters. 

ii 
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I. 

The method of transfonas is w e l l  known and widely used in 

solving the  p a r t i a l  differential  equations of engineering and 

p4ysIcs. 

especial ly  f o r  some f i n i t e  regions. 

transfonas a re  probably t h e  most well-developed examples. 

principle,  the  formalism of a f inite in tegra l  transform has been 

developed by Kaplan and Sonnemann (ref. 1 and 2) f o r  an a r b i t r a m  

two- or three-dimensional region, using t h e  eigenfunctions of a two- 

or three4imensional counterpart of t he  Stunu-Lioudlle system, 

The explicit forms of t h e  eigenf'unctions a re  known only f o r  a few 

simple regions, namely, the  rectangle, the circle, the c i rcu lar  

annulus (ref. l), the c i rcu lar  s ec to r  and the  circular-annulus 

sec to r  (ref. 3) f o r  boundary conditions of a l l  th ree  kinds. 

the purpose of this 

t r i ang le  with boundarg condition of the  first kind. 

In q cases, su i tab le  transforms can be established 

F in i t e  Fourier and Hankel 

In 

It is 

work to add t o  the  above list the  equi la te ra l  

A se t  of t he  corresponding eigenfunctions has been discovered 

by Sen (ref. 4); he has also applied it t o  the  problem of t h e  de- 

flection of t h i n  p la tes  (ref. 4 and s). 
applied t o  t h e  t r ans i en t  viscous flow problems 

C r k . u n  (ref.  7). 

c la s s i ca l  method of separation of variables, and without any 

numerical results . 

It has been recently 

Sen (ref. 6 )  and 

A l l  these applications are  i n  the form of the  

1 
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2 

In the process of establishing this f lequi t r iangular~~ in t eg ra l  

transform, it is found t h a t  Sen's eigenfunctions do not fonn a com- 

p l e t e  set. 

problems t o  be treated,  it is seen t h a t  a transform can, a f t e r  a l l ,  

be established with Sen's incomplete set. Thus, i n  t h i s  work, 

not  only is a neu transform established, but a format is a l so  dis- 

covered which shows how an incomplete set  of eigenfunctions can be 

systematically emplayed t o  the grea tes t  advantage. 

t h a t  can be treated happen to be physically t h e  most interest ing.  

It i s  only required t h a t  t h e  boundary condition (of the first kind) 

be the vanishing of the functional values, and t h a t  the inhomogeneots 

term and t h e  i n i t i a l  conditions belong t o  a ce r t a in  c lass  of fnnc- 

t ions of which the  constant i s  the m o s t  in te res t ing  m e m b e r ,  

However, by narrowing down the type of boundary value 

The problems 

The detai led properties of t h e  transform w i l l  be presented 

a f t e r  a shor t  summary of the  general theory developed by Baplan and 

Sonnemann (ref, 1). 

The transform is then used t o  solve a very general boundary 

value problem whose spec ia l  cases are  l a t e r  ident i f ied with the  

following, heretofore unsolved, physical problem : 

(1) Transient natural  convection heat  transfer.  

Theoretical investigation of t h i s  problem has been made Q 

Izumi (ref. 8) f o r  a ve r t i ca l  c i rcu lar  tube, 

made here f o r  a v e r t i c a l  equitriangular duct. 

A similar  analysis is 

(2) Steady combined natural  and forced convection flow. 

This problem with l inear ly  varging wall  temperatures has been 
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solved for v e r t i c a l  ducts of various cross sections & Ostrach (ref. 

9), Lu ( re f ,  3), Han (ref. 10) and Tao (ref. 11 and 12). 

solution in the v e r t i c a l  duct of equi la te ra l  t r iangular  cross sec- 

t i on  is obtained by application of t he  equitriangular transform. 

Here, a 

(3) 'Pransient Viscous R o w  wfth Suspended Particles.  

The t rans ien t  response of an hcomjressible  f l u i d  with sus- 

pended so l id  par t ic les  in  a t r iangular  duct, as a pressure gradient 

is applied, is investigated for t he  case of Stokes drag coupling, 

Although t h i s  is obviously the simplest example of t he  t ransient  

two-phase flow, its treatment, even i n  ducts of simple cross sectiorg 

seems t o  be absent from the exis t ing l i t e r a tu re .  

(4) Transient Heat Conduction with Heat Generation. 

This problem is well documented (ref. 13) f o r  various kinds of 

regions. 

never attempted. It is  solved in  this work with unfform heat 

generation as an example. 

The conduction i n  an equitriangular column is, however, 

Before the r e su l t s  of these problems a r e  analyzed numerically, 

t h e  following problems, whose solutions are  known i n  closed fonuS, 

a re  t rea ted  extensively using the  present method of transform: 

(1) Viscous Flow of an Incompressible Fluid. 

The s t e a e  solut ion IS t h i s  problem exists in a very simple 

form (ref. a). 
a l te rna t ive  form, namely, a ser ies .  As a by-product, the t ransient  

solutions (ref. 6 and 7)  are also rederived by t h e  present method. 

The method of transform yields  the  solut ion i n  an 

(2)  Steady Forced Convection of an Incompressible Fluid. 
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This problem was solved by Tao (ref.  1s) i n  a closed form. Its 

series form is obtained here again by t h e  method of equitriangular 

transf om. 

The above two problem are  then used t o  investigate the r a t e  of 

convergence and the Gibbs' phenomenon, if' am, of the  series. 

comparison shows t h a t  the general behavior of the series is no diff-  

erent from an ordinary Fourier series. 

son are presented i n  the Appendix. 

The 

The de ta i l s  of the compari- 



11, DEVEUXWWI’ OF AN ECUTTRIANGULAR INTEGRAL TRANSFORM 

A. General Theorg of F in i te  In tegra l  Transforms 

A general development of t h e  f i n i t e  i n t eg ra l  transform 

theory (ref . 1) based on the Helmholtz equation is  briefly 

reviewed i n  t h i s  section for the  boundary condition of t h e  

first kind. 

Consider t h e  Helmholtz equation 

defined i n  a finite two-dimensional region 3 together with 

the boundarg condition 

* = o  c m B  (2) 

where B is the boundarg of R, 

has solut ions only for a set  of d iscre te  values of 1 , 
which are  cal led the  eigenvalues An of the  problem. 

corresponding set  of eigenfunctions associated with these 

eigenvalues is represented by *n . 

This homogeneous problem 

The 

Thus, 

v2 qn + A2 * = 0 n n  

Multiplying (3) by 

obtains 

and ( b )  by $n and subtracting, one 

5 
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Then, integrat ing over t h e  region R, we have 

E& an m l i c a t i o n  of t h e  Green's theorem, t h i s  becomes 

But  the boundarg condition ( 2 )  demands t h a t  

Then, 

q m + n d a  = 0 if m # n  
B 

And for m = n, the  in t eg ra l  

$*2* d a  = Nn 
R 

is cal led the  norm Wn. 

orthogonality of t he  eigenfunctions. 

complete, it is possible t o  express a large c l a s s  of 

functions (ref .  16 and 17) as a s e r i e s  i n  tn : 

Equation (9) demonstrates the  

If the  set qn is 

PJ=p n n  * 
Multiplying (ll) by +m and integrat ing over the region 

R gives 

J@ qat d e  = J En tn qrn d a  (12) 
R R n  
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ht, by the previously established orfhogonality of tn, the 

right-hand side of (l2) vanishes for m 

equation (12) g i v e  Cn as 

n. For E = n, 

The finife integral transform of the function 6, with re- 

spect t o  $n, can nowbe defined as - 
fl - J a p  

R 

And equation (ll), which is the inversion 

transform takes the more convenient form 
IA 

n n  

(a) 

formula for  the 

'phe transform of the Laplacian of fl may now be derived 

as follons. & the definition (lh), 

The right-hand side of (16) can be wrltten as 

A p p l y i n g  Green's theorem t o  the first integral armd'usiag 

the relation (3) in the second integral, this becomes 



a 

The second in tegra l  here is c lea r ly  the transform of fl as 

given by (U). 
Remembering t h a t  + = 0 on By one f i n a l l y  obtains the  n 

re la t ion  

The importance of this re lat ionship is t h a t  it relates the 

transform of the Laplacian af flf t o  the  t r ans fom of jl it- 

self. 

condition of the  problem; i.e., the  value of j2! on B. 

The l i n e  in tegra l  i n  (17) involves only the  boundaxy 

me task  of establishing an in t eg ra l  transform reduces 

then t o  t h e  search for t h e  set of eigenvalues and eigen- 

functions uhich s a t i s f i e s  t he  homogeneous d i f f e r e n t i a l  

equation (1) with boundary condition (2). 

and inversion formulas a r e  given by equations (lb) and (15). 

The transform 

The nom and transform of t he  Laplacian operator a re  found 

by d i r ec t  calculations. The d i f f i c u l t y  of course lies i n  

t h e  determination of the complete s e t  of eigenfunctions . 
Just a set  of eigenfunctions obtained by inspection, f o r  

example, is not enough. Beside the  cases where the two- 

dimensional problem degenerates i n t o  tu0 one-dimensional 

problem (e.g., t h e  cases ins ide  a rectangle, o r  a c i r cu la r  

sector) ,  there  is no established method af get t ing a com- - 
plete set  of eigenfunctions. 

t h a t  of an approximate nature based on the  var ia t ional  prb- 

The only general method is 

ciple.  However, it w i l l  be shown i n  t he  next sec t ion  t h a t  
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even an incomplete set can be systematically emplayed f o r  a 

large class  of boundary-value problems. 

B. An Equitriangular Integral  Transform and Its Properties 

An in t eg ra l  transform will be developed i n  t h i s  sect* 

for t h e  region b o d e d  by an equi la te ra l  t r iangle  of s ide  

2a, following the general procedure set out i n  the  previous 

section. It is convenient t o  introduce here the t r i l i n e a r  

coordinates (ref. 4). 

t h e  coordinate system used are  shown i n  Figure (1). 

The region R under consideration and 

Sen (ref, 4) has shown t ha t  the system 

has a s e t  of eigenfunctions 

3 j  
= s i n  xn p1 + s i n  X p + s i n  P 

'n n 2  

where p 3 .  = .6 a - p1 - p2 

together with the  set of eigenvalues 

n = 1,2,3,... 2n I 
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The norm of t h e  set is 

E 3n a* 
2 

With respect t o  t h i s  set, one can define an equi- 

t r iangular  transform 

Although the eigenfunctions given by (20)  a r e  orthogonal 

with t h e  eigenvalues (21), there  i s  no assurance t h a t  * n 
a complete set. 

is 

To have a complete set  of orthogonal eigen- 

functions, $n as given by (20), with eigenvalues In given 

by (21), is joined by the  unknown complementary eigen- 

m9 functions Q with associated eigenvalues C 

A function of a suf table  c l a s s  can now be expressed 

i n  terms of t h i s  complete set of eigenfunctions as  



1 # 

I 
I 
1 
1 
I 
8 
I 
1 
R 
8 
I 
1 
1. 
I 
I 
1 
1 
il 

where 

a re  tu0 in t eg ra l  transforms and t h e i r  norms. The transform 

of t h e  Laplacian operator i n  terms of the  complete set of 

eigenvalues and eigenfunctions a r e  

2 Transforms of higher power of V fl, if needed, can be ob- 

tained by repeated use of (29) and (30). 

I n  order t o  obtain a transform of functions having q 

prescribed value on the three sides, the eigenfunctions 

Om must be known in detai l .  

(26),(28), and (30) could be performed. 

funct ional  value is zero on the  boundary, t he  equations (29) 

and (30) become 

Then the  integrat ions given by 

However, if the 

c 

(31) 
2 H  

- 
v2 @(n) = - a B(n) 



I 
Furthermore, Sen (ref. 6 )  has shown that a constant C can I 

I 
1 

Comparing this with (24)  reveals that 

m 
C =  

0 

(34 1 

(35) 

(Note that C is  a member of a class of functions whose 

"barred transfortus" vanish. 

class is 

work, 

Another obvious member af tbis 

sin xS p1 + sin IS p2 + s i n  P But i n  this 5 3 .  
we will only deal with the constant function). 

Now consider the following problem: 

, i n  the triangle R 

o n B  

where 8, is a constant. 



Applying (31) and (3& one obtains 

w 
me solut ion f o r  fl is then 

Now, applying (32) and (35) t o  the  or iginal  system yields  

The solut ion here  is obviously - 
P I P 0  

A p p l y i n g  t h e  inversion (24), t h e  solut ion t o  the  or ig ina l  

problem is seen t o  be 

Thus, solut ions t o  t h i s  c l a s s  of boundary value problems 

are obtained without a detaj led knowledge of t he  eigen- 

functions nm a t  all.  

This is then t h e  systematic way of u t i l i z ing  an incom- 

p l e t e  set of eigenfunctions i n  solving a c l a s s  of boundarg- 

value problems. By employing the  method of i n t eg ra l  t r ans -  

forms, it is possible t o  s t a t e  c lear ly  what c lass  of prob- 

lem one can t r e a t  by using the  " t i l d e  transform" alone 



It 

without the  necessity of knowing t he  complementary set  

0 . The problems m u s t :  (1) involve only powemof the  

Laplacian operator, say up t o  the nth order; 

t he  first kind with zero boundary values of ( V  ) , where 

i = 0, 1, 2..,. , (n-1)j and (3) involve 

m 
(2) be of 
2 5  

constant in- 

homogeneous terms and i n i t i a l  conditions. The l a s t  require- 

ment can be relaxed somewhat t o  admit function l i k e  

s i n a S p 1  + s i n x  p + s i n  X5 p3 . But t h i s  is not of 

grea t  p rac t i ca l  interest .  
5 2  

The t h i r d  general conclusion cuoted above is obvious 

from the simple example. 

by successive application cf the transform on ( V ) . 
The fjrst two can be seen eas i ly  

2 5  



111. APPIJCATImS 

A. A General Boundary Value Problem 

A general boundary value problem is solved i n  this  sec t ion  

the equitriangular transform method. The viscous flow and heat tram- 

fer applications of the following sections a r e  spec ia l  cases of this 

general problem. 

Consider t h e  following problem: 

af = a  V f + a  2 f + a  g + A ( t ) ,  

7 3 a t  2 3 4 

I )in the tr iangle R 

(47 1 

f - F(pl, p,) a t  t = 0 I 

wh!we a p  82’ 83’ a49 b 1 , b 29 b 3 , b 4 are  constants; A(t), B(t) are 

functions of t i m e ;  P(pl, p& G(pl, p2) a r e  functions of the admiss- 

able class (e.g., constants or functions l ike sin X p + s in  X p 5 1  5 2  

+ s i n  xS p3). 

Applying the equ i t rhgu la r  transform, one obtains 

- 6 a  m 2 w  a l x  = - a  X f + a3 f + a g +  2 n  4 

15 
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2 *  r* 6a 
n 

g + b g + b b f  + 3 x - B ( t )  1 bl d t  = - b2 In 

i m  H 

(53 1 

u w 
The transformed functions f and g can be determined solving the 

ordinary differential equations (52) and (53) simultaneously with 

the conditions (54) and (55) .  The functions f and g are then given 

0 
as 

or, in Cartesian coordinates, 

+ sinRn+& - x)] ( 5 9 )  
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E. Viscous Flow of an Incompressible Fluid 

The equation of motion for the fully developed flow of an incom- 
pressible  viscous f l u i d  in an equitriangular duct is (ref. 6 and 7) 

where: 

and 

The no-slip viscous boundarg condition a t  the walls is 

W is the velocity; v the kinematic viscosity;  p the  density; 

the  pressure gradient which is a function of t only. 

W = O  on 

The i n i t i a l  conditicm is 

This corresponds t o  t he  previous general boundarg value problem with 

a1 5 1 

a = v  
2 

a = O  3 
ab = 0 

A(t) - i g  

bl = 0 

b2 - 0 
b3 = 0 

bb * 0 

B(t)  = 0 
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The following two i n i t i a l  conditions a re  comidered: 

1. Fluid  a t  rest f o r  t 0 ,  A t  t = 0 an exponential pressure 

gradient is applied. 

Fluid i n  steady motion with constant pressure gradient f o r  

t <  0. 

2. 

At t = 0, the pressure gradient is exponentially dampned. 

1. Fluid i n i t i a l l y  a t  rest. - -- 
For fluid i n i t i a l l y  a t  res t ,  t he  i n i t i a l  veloci ty  condition is 

W = W  = O  a t  t - 0  (65) 
0 

The exponential pressure gradient is applied a t  t = 0 and is 

The solution t o  equations (63) and (64) with this i n i t i a l  condition 

and pressure gradient is 

e -e 6 a C  
2 

H 

W =  
Xn(vXn 4) 

Substi tuting this i n t o  equation (5;6), we have 
a, 

This is t h e  solut ion obtained by Sen (ref ,  6), here rederived by 

the  method of transform. 

Fluid i n i t i a l l y  i n  s t e a e  motion. 2. - 
For f l u i d  i n i t i a l l y  i n  steady m t f o n  wi th  constant pressure 

gradient for t C 0 and exponential pressure damping applied a t  t = 9 



the pressure gradient is 
f o r  t C 0 

bt f o r  t 3 o 
- -  

P az 

The i n i t i a l  velocity is the solution t o  the  problem of steady viscous 

flow w i t h  a constant pressure gradient. This problem is 

This corresponds t o  the  general boundary value problem w i t h  

f = w  
0 

a2 = 

A(t) = C 

as the  only non-zero quantities. 

Using these values in equations (52) through ( S S ) ,  one obtains 

6aC H 

wo = - 3 
vxn 

Note tha t  W is an admissible i n i t j a l  condition as the  inversion of 

(71) yields a ser ies  expansion i n  
0 

n* 
The solut ion t o  equations (63) and (64) with the  i n i t i a l  con- 

d i t ion  (71) and the  s t a t ed  pressure gradient is 
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Substituting th is  into equation (56 ) ,  ue have 

(73 1 
This is the solution given by Crsciun (ref. 71, again rederived W 

the method of transform. 

The solution t o  the problem of steady viscous flow with a con- 

stant pressure gradient is obtained by substituting (71)  into equa- 

t ion  (58). Replacing Wo by W to emphasize that the solution is for 

the steady flow, we have 

Equation (74) can be nondiwionalized by l e t t ing  

w 
Ka -2 

Then, the nondimensional velocity distribution is . 
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The mean nondimensional velocity is 

$w da 

- ++ (76) 
n n=1 

- R 

The nondilaensional form of the  closed form solut ion t o  t h i s  problem 

(ref. 14) is 

u = p 1 (1 - 2x) [ (x + 1) * - $21 (77 1 

The corresponding % is exactly 1/20,, 

Velocity p ro f i l e s  along t he  l i n e  y = 0 (-1 6 x < +.5) were 

computed according t o  both equations (75) and (77), and plot ted i n  

Figure (2). These profi les ,  together w i t h  t he  r a t e  of convergence 

of the series, a re  examined i n  detail  in the Append-Lx, 

C. Steady Forced Convection of an Incompressible Fluid 

Consider the steady, full developed, laminar flow of am %n- 

compressible f l u i d  with heat  sources i n  an equitriangular duct. 

With constant ax ia l  pressure and temperature gradients, and with 

negl igible  energy dissipation, the  momentum and energg equations 

are as follows: 

where W stands for t he  a x i a l  velocity; 8 f o r  t he  difference between 

T and Tu taken a t  t h e  same axia l  posit icn; and 



K2 

For other symbols, 

The viscous 

W =  

e =  

22 

Q 
" E  

see Bomenclature. 

and thermal boundary conditions a t  the w a l l  are 

O ] onB 
0 

This corresponds t o  the general boundarg value problem with 

a2 = 1 

A ( t )  = IC 

b2 - 1 

b b = - 5  
B(t) = K2 

as the only non-zero quantities. 

using these in equations (52) through (551, one obtains 

6a 

Then, the transfomd temperature difference is 
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Subst i tut ing this i n t o  equation ( 5 8 ) ,  we have 

The veloci ty  d i s t r ibu t ion  given by t h e  inversion of (82) was obtairrd 

i n  the  previous section. 

Equation (85) can be nondimensionalized by l e t t i n g  

X x = - (-1 6 x < + 1/2) e Q*= .T 
-El” 

Then, the  dimensionless temperature distributton is 

+ sin (1-2x1 (86) 
3 1 

The closed form so lu t ion  to  t h i s  problem obtained by Tao (ref. l5)iS 

Dimensionless temperature prof i les  along the l i n e  y = 0(-1 4 x ,< +.g 
were computed according t o  both equaticm (86) and (87). 

a re  shown in Figure (3 ) .  

The results 

These prof i les  a re  examined i n  d e t a i l  i n  

the  Appendix. 
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Various heat transfer parameters are e a s S l y  obtained using 

the velocitg and temperature distributions, 

given by 

The mean temperature is 

= Q* do/.(: do = 2 s @*do (88) 
B &a2 -R 

The man mixed temperature may also be calculated: 

The average Nusselt number may be defined as 

Using the series form of the velocity,  equation (75), and tempera- 

ture, equation (&), ue have 



* t m + K 2  1 
(93 1 

which are exactly the values given by Tao (ref. 15). 

D. Transient na tura l  Convection 

In tbis section, we t r e a t  the case of transient landnar nat- 

ural heat convection in an equitriangular duct of i n f i n i t e  length. 

The axis of the  duct is orientated p a r a l l e l  t o  t he  d i rec t ion  of the  

generating body force. I n i t i a l l y  t h e  f luid is a t  rest with constant 

temperature T 

ture Tw for t a  0. 

s t a n t  temperature To and the flow is thermally and hydrodynamically 

fully developed. Assuming negligible energy dissipation, and quasi- 

The duct wall is maintained a t  a constant tempera- 
0. 

The ends of t h e  duc t  a r e  open t o  f l u i d  a t  con- 

incompressible f l u i d  (i.e., the density changes only w i t h  t h e  t e m -  

perature variation),  t he  momentum and energy equations can be 

writ ten as: 

- -  a d e ,  a t  - 
).in the  t r i ang le  R 

J 
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where 

8 = T - T  
W 

e = T  - T  
0 o w  

l'he boundaxy conditions a t  the wall are 

I d s o  } o n B  
Q = O  

and the i n i t i a l  conditions are 

w = o  a t t = O  

9 = 8  a t t = O  
0 

( 9 8 )  

(99)  

This is a special case of the general boandarg value problem 

with 

Snbstftuting these values i n t o  equations (52) through (55) ,  and 

using the previously obtained equitriangular transform of a constant, 



lI 
I U  

one obtains 

The solution t o  equation (101) with the i n i t i a l  condition 

(103) is 
2 - & A n t  

6 a .  (la 1 % e 'n 

err 
8 s -  

Substituting this into equation (59) ,  we have 

(105 1 

Using the transformd temperature solution (la) i n  equation (100) 

gives 
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The solution t o  equation (106) with the i n i t i a l  condition (102) i s  

" 6 a  u = -- 
A 3  n 

m 4 a  w = -  
n 1 3  

where, Pr = v/x is the Prandtl number. 

Substituting these into equation (SS), we have 

a J ~ Y  x X[+l xn(&-T a J?Y + x F) +sharl(fi + - 2 + -) 2 + sin - q.1. Pr=l 

Equations (105), (lop), and (UO) can be nondimensionalized 
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by letting 

e 
II 
0 
I 
I 
t 
1 
I 
8 
8 
S 
I 
1 

Then, the dimensionless temperature and velocity distributions are 

*(1_2X) ,if Pr 51 +y+X)+Sin 
3 1 [sin 9 1 -  ; y + x)+ sin %(l 3 

2 uhere FQ = .&/a is the Fourier number; and w = h2n2/3 . n 



The mean temperature and velocity a re  

Dimensionless temperature prof i les  along the l i n e  y P 0 

(-I( x 6 + .5) were ce lcda ted  from equation (111). 

a r e  shown i n  Figure (4). 
walls decreases with increasing time; and, a t  a l l  times, the value 

near t he  base is l a rge r  than the value near t h e  t ip .  

The prof i les  

The temperature gradient near the duct 

Nandimensional velocity dis t r ibut ions along the line y = 0 

(-1 6 x c + .5) were computed according t o  equation (E?) f o r  ~r =.7 

and Pr = 3. with results shown in Figure ( 5 ) .  

t he  f l o w  evolves from an i n i t b l  l oca l  f l u i d  acceleration near the  

walls with the  fluid near the duct center a t  mst, t o  the  f i n a l  

acceleration of the  f lu id  core t o  steady flou. The steady flow is  

due t o  the density difference of the f l u i d  i n  the  duc t  a t  T, and 

the f l u i d  a t  the  open ends a t  To. 

With increasing time, 
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The dilaensi~riless man teaperature and veloci ty  were calcu- 

l a t ed  f r o m  equations (U), (Us), and (U6)j with results given in 

Figure (6). 

velocity. 

creased. 

The man temperature increases f a s t e r  than t h e  mean 

This time l a g  is reduced as the  Prandtl  nmber is in- 

E. Steady Ccnubfned Natural and Forced Convection 

Consider the steady laminar fully-developed flow with heat 

sources, constant a x i a l  pressure and temperature gradients, i n  an 

equitriangular duct. 

t o  the  generating body force. 

diss ipat ion is negl igible  and the f l u i d  is quasi-incompressible. 

Then, the  momentum and energy equations a r e  

The duct is orientated i n  a d i rec t ion  pa ra l l e l  

W e  again assume t h a t  the energy 

where 8 is defined the  same way as i n  section C. n , the  pressure 

gradient parameter, is introduced according t o  t h e  estabUshed 

theorg of semi- o r  quasi-incompressible flubis ( re f .  9 and 3). 

The boundarg conditions a t  the wall a r e  again 

' I o  } o n B  
0 = 0  



32 

D 

The general boundary value problem reduces t o  this set if ue 

take 

f = W  g = e  

a 1 - 0  

a2 = cr 

a3 = 0 

bl = 0 

b2 = k 

b3 = 0 

a4 = PSfz bb = - PC A 

A(t)  = -n B(t) = Q 

wing these values in equations (52) through (551, we have 

Solving these  simultaneously, one obtains 



33 

Substi tuting t h e s e  i n t o  equations (581 and (591, w e  have 

(126) 
In order t o  nondimensionalize the velocity and temperature 

distributions,  t& hydraulic diameter of the duct is used as the char- 

a c t e r i s t i c  length. When A # 0, (c  %Ad/Pr)1'2 and Ad a re  used as the 

charac te r i s t ic  velociw and temperature, respectively, For A = 0, 

( c  ETdPr)1/2 and Tw are used. Then, t h e  dimensionless temperature 

and velocity dis t r ibut ions a re  
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and, 
rn 

4n 
2 

+ - (1 - 2x11 

&ere : 

0 e* = Ad 
A 

W 

e*=  g e 

= R a  (”’”) 
EA A 

E =  Ra ( p f f )  



Ra = 
A 

The mass through-flou is 

Then, the dimensionless 

v = G  A 

and, 

where 

35 

li 
L =  

R a = P r ( f r  

2 u 

mass through-flou is 
aa 

n-1 

Bf z - v  1 
k VA = - 

EA 

if A # 0 (131) 

A 

for  A = 0 (132) 

1 - v  Bfz 
v = i z  k 
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The mean mixed temperature is 

Then the dimensionless mean laired temperature is 

U A f O  

f o r  A = 0 

The average Nusselt number may be defined as 

The mlationship between the dimensionless mass through-f low 

and the dimensionless heat source and pressure gradient parameters 

is, i f A + O ,  

v = e 0 0 2 6 0 1  FA 0 .Oh856 LA f o r  ReA = 1 
A 
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V A - .ooo611r FA - ,01380 LA f o r  RaA = loo0 

Iusselt numbers were  calculated according t o  equation (135) using 

these r e l a t ionsh ip .  

pressure gradient parameter is posi t ive and the  Rayleigh number is 

high enough, large values of the  heat source parameter w i l l  change 

the  direct ion of the overall  heat transfer.  A camparison with the  

re8ults ( l i g h t  curves i n  Figure 7) obtained by Lu f o r  a duct with a 

cross sec t ion  of (I 60' circular  sector  (ref.  3), shows t h a t  the  

difference between the two shapes, althcugh small a t  s m a l l  values of 

the  Rq le igh  number, increases as t h e  Ffayleigh number increases. It 

is also seen t h a t  tbe lusselt  number approaches its final asymptotic 

value sooner i n  the case of the equitriangular cross section, LA = 0. 

F. 

The results are given i n  Figure (7). Idhen t h e  

Transient Viscous Flow of an hcompressible Fluid with Suspended 

Particles 

The equation of motion f o r  the t ransient  laminar flow of an 

incompressible f lu id  with a uniform suspension of so l id  par t ic les ,  

f o r  t h e  case of Stokes drag coupling, is (ref . 18 and 19) 

E v + (5 - W) + ~ v ,  i n  the t r iangle  R a t  

where W is the f lu id  velocity; XP, t he  pa r t i c l e  velocity; v, the  

kinematic viscosity; b, the r a t io  of the pa r t i c l e  concentration 

density t o  the f luid density; .c,the momentum equi3ibrium time (ref.  18 and 19); 

adK,  the axia;l pressure gradient parameter - - The r a t e  of ! A d z b  
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change of particle velocilq due t o  the Stokes drag force is 

The n o s l i p  boundarg condition for the f lu id  is 

w = o  on B (139 1 

For the f l u i d  originaw a t  rest, with the particles suspended also 

a t  rest, the i n i t i a l  conditions are 

' = ' }  a t t - 0  
wp = 0 

This corresponds t o  the general boundary value problem with 

f = w  g = wp 
al = 1 bl = 1 

a 2 = v  b2 = 0 

a4 = b/T bb = 1/7 

A(t) * K v B(t) = 0 

F(P1SP2) - 0 G(P1' P2) = 0 

U s i n g  these values in equations (52) through (551, one obtains, - 
w -  - w + -  b H  & K V  

= - V I ,  7 z w P + r  
dW 2 -  b"' 

n 
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mj, - = - w - -  1-  1 "  
dt T 7 wP - 

W = O  a t t = O  i W p = O  a t t = O  
w 

Solying equations (a2) and (l.43) simultaneously with the  i n i t i a l  

conditions (l4.4) and (I-&), we have 

D2t (lurD2)e - - Dl H 
U P  

'n 3 [ . +  D2 - Dl 
(fib) 

- F l  
Dl e 

D2t D2 ."'I - up=* p +  
D2 - Dl 3 

In 

( a 9 1  

Substftuting equations ( f i 6 )  and (I&) into the inversion f o d s  

(58) and (59 )  gives 



40 

The fluid and particle  velocity distributions can be nondimension- 

alized by letting 

W 
Ka 

W n  - 2 

wP 
W =  
p g a 2  

X 
X I  - 

WS7 

Y 
a 
- Y =  

(-1 6 x + $) 

Then, equations (150) and (151) become 

1 3 y+x)+ sin 9 1  + 3 3 y + x>+ sin - 2nn ( ~ 2 x 1  
3 

Dl*t* Dl* 
w = A  E >b- -  D2" e + e 

a0 

3 D**=Dl* D ~ * - D ~ *  *n n-1 
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L1 

H e r e  
t t*= - 

a2/v 
* z 

9 I- 

a2/y 

2 2  
9+ 

* e2 + +) 2n2n2(b-l), + (b+;l2 D2 = - -  
22 3T* 42 

The dhensionless mean velocities are: 
a 

D "  
+ -  D2*-Dl* ' (1+TDJ*D3*] 

e ""I D2f e D1*t* + D1" aD 
9 I$ da =2 n=l ?b-D:-.Dc D ~ * - D ~ *  

(155) 

These values were calculated and the results are given in Figures 

(8) through (12). 

equilibrium time according t o  Stokes drag law, is  (ref. l.4) 

For spherical particles af radius I , the momentum 

2 
2 P P f  

P L v  
z = -  
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or, i n  dimensionless form 

* 2 PP 
PL 

= -  - 

Figure (8) shows t h a t  the f luid-par t ic le  velocity difference 

is small when t h e  pa r t i c l e s  are small i n  s ize .  For large par t ic les ,  

however, t he  f lu id-par t ic le  velocity difference is la rge  as Shawn 

Figure (9). 

needed t o  reach steady flow, although the  time when the f l u i d  and the  

Increasing the  number of pa r t i c l e s  increases the  time 

pa r t i c l e s  s t a r t  accelerating seems t o  be the same f o r  a l l  concentra- 

t ions.  A t  low p a r t i c l e  concentrations, Figure (lo), the f l u i d  moves 

t h e  pa r t i c l e s  with it a t  a l l  times when the  p a r t i c l e  s i z e  i s  small. 

With la rge  par t ic les ,  t h e  f l u i d  f l o w  is unaffected but l a rge  fluid- 

p a r t i c l e  velocity differences resul t .  When l a rge  p a r t i c l e  concentra- 

t ions  a re  present, Figure (ll), lower par t i c l e  and fluid a c c e l e r a t i m  

result. For large p a r t i c l e  sizes, the  f l u i d  s t a r t s  accelerating 

eooner but  the par t ic les  s t a r t  l a t e r .  The time t o  reach steady flow 

is  a l so  increased as pa r t i c l e  s ize  is  increased. The l imi t ing  case 

of vergr l a rge  b, w i t h  very small T, is shown i n  Figure (12). Here, 

a s  the  pa r t i c l e s  begin t o  accelerate, the f l u i d  ve lcc i ty  approaches 

t h e  inteneediate value of a f l o w  pas t  s ta t icnary  par t ic les .  

t h e  f l u i d  and par t ic les  accelerate t o  the  same f i n a l  steady value of 

Then 

veloci ty  . 
G. Transient Conduction with Heat Generation 

The governing equation fo r  t rans ien t  heat conduction with 

uniform heat generation i n  an equitriangular column i s  
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, i n  the  t r iangle  R (156) E = x v , + -  2 Q 
a t  PC 

0 
where €3 stands f o r  T-Tw . 
and the  wal l  surfaces are  maintained a t  temperature Tu f o r  t 3 0. 

Then, t he  i n i t i a l  and b o d a r g  conditions a re  

The column is i n i t i a l l y  a t  temperature T 

e a o  on B (157 1 

0 To - Tw = eo a t t = O  (158 1 

This belongs t o  the  general boundary value problem with 

as  t h e  only non-zero quantit ies.  

Subst i tut ing these i n t o  equations (51) through (55 ) ,  and us- the  

previously obtained equitriangular transform of a constant, one ob- 

t a ins ,  
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!ke solut ion t o  this i I l i t i a 1  value problem is  

2 
1 Q + - - (1-0 -. 6a -cthn t 

e = - [€lo e 
‘n &a: pC 

Substi tuting t h i s  i n to  equation ( 5 8 ) ,  we have 

Equation (162) can be nondimensicnalized by l e t t i n g  

0 e*=  - 
*o 

2 
k0 

Q*p 

0 

Then, t he  dimensionless temperature d is t r ibu t ion  is 

h2n2 
3 ’  where Fo is the Fourier nvmber:, and w = n 
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The sustained temperature distribution ( i .e . ,  Fo + m) corres- 

ponds to the s t e ~ d y  viscous f l o w  velocity distribution with w re- 

placed by €3 /Q . 
the distribution of 0 /Q . 

+ *  Thus, the profiles shown i n  Figure (2) also d e s c m  
9 4  

Equation (163) reduces to equation (111) for Q* 3 0. That is, 

the temperature profiles along the line y = 0 for transient heat con- 

duction with no heat generation are alxo shown in Figure (k). 

I 
I 
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Iv. CoNcLuSIms 

A n  integral transform has been established f o r  solving a c lass  

of boundarg value problem of the f i rs t  kind in an equitriangular 

region. The transform of the Laplacian of a function was shown t o  be 

r e l a t ed  to the tramfonn of the funct ion Ptself .  

l a t e s  the transform of 

ive use of t h i s  property, p a r t i a l  d i f f e r e n t i a l  equations involving 

powers of t h e  Laplacian operator can be reduced t o  o r d i n a q  differen-  

t i a l  equations o r  algebraic equations . 

This fact a l so  re- 

v2" t o  t h a t  of V 2(n-1). Thus, by success- 

The set  of eigenfunctions used t o  es tab l i sh  t h i s  transform is  

not  a complete set; however, by narrowing down t h e  type of boundaly 

value problems t o  be treated,  the known s e t  has been used t o  the 

grea tes t  advantage. 

ing t h e  known set  of eigenfunctions with an unknown complementary set  

of eigenfunctions t o  form the complete set. 

The procedure emplcrged consisted of first join- 

Then, the admissible 

type of boundary value problem becomes the c lass  of problems which 

can be solved the method of t r ans fo rm without any knowledge of 

t he  complementaxy eigenfunctions. This requires t h a t  the  inhomogen- 

eous term and i n i t i a l  conditions be constants o r  functions l i k e  

+ sin X p + sin Asp3, 

boundary values of ( 9')' j 3. - 0, 1, 2, ... (n-1). 

Also, the  problem m u s t  have zero 
sin x5pl  5 2  

The above format could be followed i n  establ ishing in t eg ra l  

transforms f o r  other  regions i n  which an incomplete s e t  of eigen- 

functions is known. 

46 
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A general time dependent boundary value problem, i n  an equi- 

t r iangular  region, with posit ion dependent i n i t i a l  conditions of the  

admissible clasF, was solved by the transform method. The case of a 

coupled system of two dependent variables, with d i f f e ren t i a l  operators 

( v2)' and ( V2)*, and zero functional value on the boundary, was 

considered. Boundary value problems corresponding t o  this general 

problem can be solved by d i rec t  subst i tut ion i n t o  the given trans- 

formed equations. 

most general boundary value problem solvable by t h e  method of equi- 

t r iangular  transform. 

time dependent coupled system of rn equations wfth m dependent var- 
2 

iables,  With higher powers of v 

It should be noted, however, t h a t  this i s  not the  

The admissible c lass  of problem includes the  

operating on each of t he  variables. 

The veloci ty  d is t r ibu t ion  f o r  steady viscous incompressible 

f l u i d  flow, and the  temperature distribut-Jon f o r  steady laminar 

forced convection, uereobtained as spec ia l  cases of the general bound- 

a r y  value prqblem. These ser ies  solut ions were numerically compared 

w i t h  previously obtained closed form solutions t o  investigate the r a t e  

of convergence and the  Gibbs' phenomenon of the series. The analysis 

showed t h e  general series behavior t o  be s imilar  t o  tha t  of an ordin- 

a rg  Fourier series. 

The previously unsolved problems of t ransient  natural  convec- 

t ion,  steady combined natural  and forced convection, t rans ien t  vis-  

cous flow w i t h  suspended particles,  and t rans ien t  conduction with heat 

generation were solved also as  spec ia l  cases of the  general boundarg 

value problem. 

should prove t o  be of prac t ica l  value. 

Some numerical r e su l t s  were a l so  worked out  which 
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D1sD2 

Dl*, D2* 

d 

E 

EA 

e 

F 

f 

t 
f 

= aT/aZ 
= function of time 

= half side of the e q u i l a t e r a l t r i a n g l e  

= constants 

= boundary of €2 

= function of time 

= r a t i o  cf par t ic le  ccncentration density t o  fluid 

density 

= constants 

= constant 

= specific heat of an incompressible median 

= damping factors 

= dimensionless damping fac tors  

6 2 a / A  , hydraulic d i a m t e r  

= Ra @fzd/c) 

= €?a (pfzd/c) 

= exponential base 

= w2mw, dimensionless heat source paramter 

I Qd/kA, dimensionless heat source parameter 

A 

= function of posit ion 

= &/a , Fourier number 
= a dependent variable 

= body force per unit  mas, pos i t ive  i n  -S di rec t ion  

= function of posit ion 

2 
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T d 3 2  /u ), Grashof number 
= (P P, w 

2 I r 2  = ( p  @,Ad /U ), modified Grashof number 

= a dependent variable 

a t - -  ' = , pressure gradient parameter 
P az 

= Qb 
= g2/-KKla 2 

= themal conductivity 

= (Pr/c E fld2,/w , dimensionless pressure 

gradient parameter 

= (Prd3/c n / p  , dimensionless pressure 

gradient parameter 

= norm of n 

= 1, 2, 3, etc.  
m 

= outward unit normal vector (two-dimemional)of B 

= norm of *n 

= average Nusselt number 

= average Russelt number 

= 1, 2, 3, etc. 

= pressure 

= v/x, Prandtl number 

= tr i l inear  coordinates 

= heat source term 

= dimensionless heat source term 

= normal wall heat flux, positive inward 
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= t he  two dimensional region under investigation 

= Pr Gr, Rayleigh number 

= Pr GrA, modified Rayleigh number 

= l i n e  element along B 

= temperature 

= ti- 
a. 

= */a', dimensionles t i m e  

= mass through-flow 

= (1B) (Bf /k)V, dimensionless mass-through flow 

= (lhA) (Bfz /k)V,  dimensionless mass-through f l a w  

= a x i a l  velocity 

= p a r t i c l e  axial veloci ty  

= dimensionless a x i a l  velocity 

z 

= dildensionless pa r t i c l e  a x i a l  veloci tg  

= Cartesian coordinates 

= dimensionless x-coordinate 

= dimensionless y-coordinate 

= k/pc , thermal d i f f a s iv i ty  

= thermal coeff ic ient  of volumetric expansion 

P gradient 

= -T+-&-2+-*+-2- a2 a2 a* a2 a* 
ax aP, aP2 aP3 

= damping f a c t o r  

= p a r t i c l e  radius 

= 4 4 3  

= T - T w  

a2 

asap2 
- 2 a - 

-3 
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e* t dimensionless temperature difference 

n x 

u. 

= eigenvalues of *n 

5 absolute viscosity coefficient 
il 

V = w/p, kinematic viscosi ty  coefficient 

= eigenvalues of Qa 

= dP/dZ + pwfz, pressure gradient parameter 
'5, 

II 
ll = 3.filS9 

P = density 

= reference density evaluated a t  temperature T, 

= summation over n = 1, 2, 3, ... 
= area element of R 

e-  = momentum equilibrium t i m e  
2 

o vz/a , dimensionless momentum equiliWLm time % 
7 

Id IC a dependent variable 

= eigenfnnctians *n 
a m 
@n 

o eigenfunctions 

= 4n2it2/3 

sllbscripu 

0 = i n i t i a l  value 

n = mean value 

W = wall value 

z o ax ia l  direction 
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VII. APPENDIX 

In this Appendix, numerical solutions t o  the steady viscous 

f l a w  problem and the stePdy laninar forced convection problem are  

ana lped  i n  de t a i l ,  The solutions obtained by the  equitriangtilar 

t r ans fom method 2re compared with the  closed form solutions. 

The dimensionless velocity d is t r ibu t ion  f o r  the steady viscous 

flow of an inccmpressible f l u i d  is given i n  series form by equetion 

(75), and i n  closed form ty equation (77). 

these a re  

Along t he  U n e  y = 0, 

1 2 w = (l-ZX)(X+l) 

where 

The percent changes i n  the value of w according t o  the series, 

due t o  the  addition of each of the first 16 terms, a re  g5ven f o r  

various values of x i n  Table If, These results show thz t  a term con- 

t r ibu t ing  a small amount t o  the  series value is often followed by a 

term mking a substant ia l  change, Thus, t es t ing  f o r  convergence is 

b e t t e r  made on the change due t o  the addition of a group of terms. 

All numerical values czlculated i n  this work a r e  terxinated when a 
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three-term group changes the  current s e r i e s  value by an amount smaller 

than 0.01percent. 

Velocity prof i les  given by the  closed form and the  series form 

a re  shown i n  Figure (2). No distinguishment can be made between the  

series and closed form prof i les  became of the  ari-nuteness of the  diff- 

erence between these values. "he number of terms required f o r  con- 

vergence within .01 percent, and the  percent e r ro r  as  compared with 

the closed form solut ion are  given in Table 111 f o r  increments in 

x of 0-1. The t ab le  shows t h a t  the  e r ro r  is largestnear t he  bound- 

aries; and that, in general, large numbers of terms are  required near 

the boundaries , 

The number of terns required for convergence and the percent 

errm between t h e  series and closed form solutions a r e  given i n  Table 

I V  for values of x verg close to t he  boundaries. The behavior of t he  

series near t he  base is better than near t h e  t i p  of the t r iangle .  As 

t h e  bound- is approached, t he  e r ror  increases. 

enon seem t o  occur for -1,000 < x < -.998 or  .b98 < x 

Thus, Gibbst phenom 

.SOO. 

The dimensionless temperature d is t r ibu t ion  f o r  steady laminar 

forced convection is given by equation (86) i n  the  se r i e s  form, and 

equation (87) fn t he  closed fonn. Along t he  l i n e  y = 0, these are 

a d ,  

e * =  (1-2x) ( ~ + 1 ) ~  (1-x2 - 12K2*) 
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where 

1 
F - l S X S +  

Temperature profiles calculated accordfng to these equations 

are shown in Figure (3) .  

between the series and closed form profiles.  

quired f o r  convergence within .01percent, and the error  referred t o  

the  closed form are  given i n  Table  V f o r  the case of K2 

Similar results were obtained i n  the range -3.0 \< K < + 3,Om 

behavior of the se r i e s  is poorest near the t i p .  

Again, no distinguishment can be made 

"he number of terms re- 

* 
= 3.0. 

* The 

The above resul ts  seem t o  indicate  a behavior similar t o  t h a t  

of a Fourier ser ies .  

region; however, a large number of t e r m  might be required near the 

boundaxy, 

t he  boundaries, where Gibbs' phenomenon could occur. 

The series seem t o  converge througho;rt the  

The ser ies  uould converge t o  t h e  correct value except near 
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X - 

-095 
-.90 
-08 - 07 
-06 
-05 - 04 
-*3 
-02 - -1 
0.0 
01 
e 2  
-3 
-40 
-4s 

TABU I11 

Number of Terms for 
Convergence within ,O1$ 

54 
27 
42 
18 
36 
30 
18 
18 
15 
15 
15 
15 
12 
18 
27 
27 

% Error Compared 
with Closed Form 

-0347 
-e324 
-eo17 
-.Os0 
c o  m 
+*O@ 
<OOOl 

- e o 0 6  
+ .OU 
-.006 
-000s 
-.OU 
-0001 
-.OW 
-,038 



X - 
-0998 
-0996 
-0994 
-0990 
-0986 - 982 
-1978 - 0 974 
-0970 - 0 966 - 0 962 
-e958 - 954 

X - 
0454 
,458 
-462 
.466 
470 
0474 
oh78 
.482 
,486 
0490 
0494 
-498 
0496 

61 

TABLE IV 

(a) x near -1.0 

Number of Terms for Series 
Convergence within ,Ol% 

735 
369 
246 
261 
1% 
150 
123 
1% 

48 
81 
72 
66 
60 

(b) x near *.5 

Number of Term for Series 
Convergence within .OX% 

18 
30 
36 
15 
30 
21 
36 
33 
39 
51 
63 
75 
87 

% Error from 
Closed Form 

-28080 - 4.78 - .29 - lo& 
+ 2.59 - -67 
- -54 - 047 
+ 3.08 - -40 - -38 
- 037 - .36 

% Error from 
Closed Form 

+ 010 
-002 
-002 
+.03 
+ e o 6  

+ -04 
+.07 
+.Oh 
+ e o 1  - e 0 1  
-001 - 0 1 2  
-020 



X - 
-095 
-090 
-08 
-07 
- e 6  

62 

TABLE V 

Number of Terms f o r  
Convergence within .Ol$ 

57 
30 
45 
21 
39 
33 
21 
21 
18 
18 
15 
18 
15 
21 
30 
30 

% Erro r  Compared 
w i t h  Closed Forla 

-0347 
-a322 
-e017 - .os0 
-0001 
4 0 0 0 s  < 0001 
-0005 
-0006 
* e 0 1 1  
-0010 
= .os0 
-.OU 
-e001 
-0009 
-0027 



Figure (1) - The quitriangular Region 
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Figure (2) - Diaensionless veloc3ty.prof5le along y = 0 f o r  steady 
viscous flow of an incompressible fluid. 
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Figure (3 )  - Dimensionless temperature profiles along y = 0 for 
steady lriminar forced convection 
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f o r  t rans ien t  natural  convection. 
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Figure ( 5 )  - Emensionless velocity F r o f i l e s  a l o q  y = 0 fGr 
t ransient  natural convection 
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Figure ( 6 )  - Mean dimensionless tempereture and velocity 
for transient natural convection. 
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Figure (7) - Nwselt number f o r  'combined n a t u r a l  and forced convection 
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